Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(34): e2114680119, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35972958

RESUMO

This study describes and demonstrates key steps in a carbon-negative process for manufacturing cement from widely abundant seawater-derived magnesium (Mg) feedstocks. In contrast to conventional Portland cement, which starts with carbon-containing limestone as the source material, the proposed process uses membrane-free electrolyzers to facilitate the conversion of carbon-free magnesium ions (Mg2+) in seawater into magnesium hydroxide [Mg(OH)2] precursors for the production of Mg-based cement. After a low-temperature carbonation curing step converts Mg(OH)2 into magnesium carbonates through reaction with carbon dioxide (CO2), the resulting Mg-based binders can exhibit compressive strength comparable to that achieved by Portland cement after curing for only 2 days. Although the proposed "cement-from-seawater" process requires similar energy use per ton of cement as existing processes and is not currently suitable for use in conventional reinforced concrete, its potential to achieve a carbon-negative footprint makes it highly attractive to help decarbonize one of the most carbon-intensive industries.

2.
Waste Manag ; 150: 227-243, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35863171

RESUMO

This study investigated two approaches for managing Waste-to-Energy (WTE) fly ash (FA): (i) phosphoric acid stabilization of FA and disposal in non-hazardous landfills, so that it can pass the U.S. TCLP procedure and meet the U.S. Resource Conservation and Recovery Act (RCRA) standards; (ii) use of FA or phosphoric acid stabilized fly ash (PFA) as cement substitute in construction for avoiding disposal in landfills and reducing the consumption of Portland cement. The effect of stabilization was identified by TCLP tests and XRD quantification (QXRD), which showed that the economically optimal concentration for PFA to pass the RCRA was 1 mol/L H3PO4 (equivalent to 0.4 mol of H3PO4/kg of FA). Zn/Pb-phosphates were formed in treated ash by using high concentration H3PO4 (e.g., 3 mol/L). Thus, the hazardous FA was chemically stabilized to PFA, that were both discussed as cement substitute. QXRD and SEM results showed that both FA and PFA (1 mol/L H3PO4) chemically reacted with cement and water. Up to 25 vol% of the cement can be replaced by FA or PFA, with similar mechanical performance of cement mortars than that of reference. Testing by LEAF Method 1313-pH dependence showed that the FA and PFA cement mortars exhibited the same leachability of heavy metals; therefore, this study demonstrated the technical feasibility of utilizing either raw FA or stabilized PFA as supplementary cementitious material. The leachability of heavy metals in optimal FA or PFA 25 vol% cement mortar was under the U.K. WAC non-hazardous limits.


Assuntos
Metais Pesados , Eliminação de Resíduos , Carbono , Cinza de Carvão , Materiais de Construção , Incineração , Material Particulado , Fosfatos , Eliminação de Resíduos/métodos , Instalações de Eliminação de Resíduos
3.
Faraday Discuss ; 230(0): 187-212, 2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34042933

RESUMO

Carbon mineralization to solid carbonates is one of the reaction pathways that can not only utilize captured CO2 but also potentially store it in the long term. In this study, the dissolution and carbonation behaviors of alkaline solid wastes (i.e., waste concrete) was investigated. Concrete is one of the main contributors to a large carbon emission in the built environment. Thus, the upcycling of waste concrete via CO2 utilization has multifaceted environmental benefits including CO2 emission reduction, waste management and reduced mining. Unlike natural silicate minerals such as olivine and serpentine, alkaline solid wastes including waste concrete are highly reactive, and thus, their dissolution and carbonation behaviors vary significantly. Here, both conventional acid (e.g., hydrochloric acid) and less studied carbonic acid (i.e., CO2 saturated water) solvent systems were explored to extract Ca from concrete. Non-stoichiometric dissolution behaviors between Ca and Si were confirmed under far-from-equilibrium conditions (0.1 wt% slurry density), and the re-precipitation of the extracted Si was observed at near-equilibrium conditions (5 wt% slurry density), when the Ca extraction was performed at a controlled pH of 3. These experiments, with a wide range of slurry densities, provided valuable insight into Si re-precipitation phenomena and its effect on the mass transfer limitation during concrete dissolution. Next, the use of the partial pressure of CO2 for the pH swing carbon mineralization process was investigated for concrete, and the results were compared to those of Mg-bearing silicate minerals. In the PCO2 swing process, the extraction of Ca was significantly limited by the precipitation of the carbonate phase (i.e., calcite), since CO2 bubbling could not provide a low enough pH condition for concrete-water-CO2 systems. Thus, this study showed that the two-step carbon mineralization via PCO2 swing, that has been developed for Mg-bearing silicate minerals, may not be viable for highly reactive Ca-bearing silicate materials (e.g., concrete). The precipitated calcium carbonate (PCC) derived from waste concrete via a pH swing process showed very promising results with a high CO2 utilization potential as an upcycled construction material.

4.
Waste Manag ; 118: 180-189, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32892094

RESUMO

In the U.S., about 27 million metric tons of municipal solid waste are used as fuel in Waste-to-Energy (WTE) power plants, generating about seven million tons of mixed bottom ash and fly ash (combined ash) annually, which are disposed of in landfills after metal separation. This study assessed the effect of using combined ash as a substitute of mined stone aggregates on the mechanical properties and leachability of cement mortar and concrete. The as-received combined ash was separated into three fractions: fine (<2 mm), medium (2-9.5 mm), and coarse (9.5-25 mm). The substitution of up to 100% of stone aggregate by the coarse and medium fractions of combined ash produced concrete with compressive strength exceeding 28 MPa after 28 days of curing. Similar results were obtained when the fine combined ash was used as a sand substitute, at 10 wt%, in mortar. The concrete specimens were subjected to several days of curing and mechanical testing. The results were comparable to the properties of commercial concrete products. The mechanical test results were supplemented by XRD and SEM analysis, and leachability tests by EPA Method 1313 showed that the optimal concrete products effectively immobilized the heavy metals in the combined ash.


Assuntos
Cinza de Carvão , Materiais de Construção , Força Compressiva , Incineração , Centrais Elétricas , Resíduos Sólidos
5.
Materials (Basel) ; 9(4)2016 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-28773348

RESUMO

Given the continued challenge of dispersion, for practical purposes, it is of interest to evaluate the impact of multi-walled carbon nanotubes (MWCNTs) at different states of clustering on the eventual performance properties of cement paste. This study evaluated the clustering of MWCNTs and the resultant effect on the mechanical and electrical properties when incorporated into cement paste. Cement pastes containing different concentrations of MWCNTs (up to 0.5% by mass of cement) with/without surfactant were characterized. MWCNT clustering was assessed qualitatively in an aqueous solution through visual observation, and quantitatively in cement matrices using a scanning electron microscopy technique. Additionally, the corresponding 28-day compressive strength, tensile strength, and electrical conductivity were measured. Results showed that the use of surfactant led to a downward shift in the MWCNT clustering size distribution in the matrices of MWCNT/cement paste, indicating improved dispersion of MWCNTs. The compressive strength, tensile strength, and electrical conductivity of the composites with surfactant increased with MWCNT concentration and were higher than those without surfactant at all concentrations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...